BACHELOR OF SCIENCE IN SOFTWARE ENGINEERING

Program Contact: Jonathan Blake (Jonathan.Blake@quinnipiac.edu) 203-582-8539

Computers are ubiquitous, and thus so is the code to run devices, applications and even the machines themselves. The most complicated artifacts built by humans are software systems, and software engineers design and develop these systems. Using cutting edge engineering principles and practices in a hands-on team-oriented environment, software engineering students learn how to build the code of the future.

Through exposure to the University Curriculum, foundational coursework in science, mathematics, major field courses and extracurricular activities, students graduating with a BS in Software Engineering achieve intellectual proficiencies in critical thinking and reasoning, scientific literacy, quantitative reasoning, information fluency and creative thinking and visual literacy. They also achieve interpersonal proficiencies in written and oral communication, responsible citizenship, diversity awareness and sensitivity and social intelligence.

BS in Software Engineering Curriculum

Note: a minimum grade of C - is required for all computer science and software engineering course prerequisites, unless otherwise stated.

Within the policies of the School of Computing and Engineering, the Software Engineering program enforces credit limits during the academic terms. Exceeding 18 credits in the fall or spring semesters, 4 credits in the January term, or 10 credits in each summer term requires the approval of the dean's office.

| Code | Title |
| :--- | :--- | ---: |
| University Curriculum | | Credits

Take two additional courses from within 6 Humanities, Social Sciences, Fine Arts ${ }^{2}$

Personal Inquiry II:

MA $141 \quad$ Calculus of a Single Variable 3
Take an additional 5 UC credits (some of the 5
Additional Requirements below could count)
Integrative Capstone:
University Capstone 3
Common Engineering Curriculum
ENR $395 \quad$ Professional Development Seminar 1
Additional Requirements ${ }^{3}$
MA $285 \quad$ Applied Statistics 3
Additional 13 credits of Mathematics or Science 13
Any UC Natural Science Elective in BIO, BMS,
CHE, PHY or SCI or in another science disciplinewith program director approval. If thoseelectives are in the same discipline as the 8-credit Natural Science sequence, programdirector approval is needed.Mathematics elective from the following list:

MA 150	Integral Calculus With Applications		
MA 153	Calculus II: Part A		
MA 154	Calculus II: Part B		
MA 229	Linear Algebra		
MA 301	Foundations of Advanced Mathematics		
MA 305	Discrete Mathematics		
MA 315	Theory of Computation		
MA 318	Cryptography		
MA 378	Mathematical Modeling		Or any Mathematics course with rigor at least
:---			
equivalent to MA 141 with program director			
approval			

Software Engineering Courses
\& 110L and Programming and Problem Solving Lab
CSC 111 Data Structures and Abstraction 4
\& $111 \mathrm{~L} \quad$ and Data Structures and
Abstraction Lab
CSC 215 Algorithm Design and Analysis 3
SER 120 Object-Oriented Design and 4
\& 120L Programmingand Object-Oriented Design andProgramming Lab
SER 210 Software Engineering Design and 3
Development
Introduction to Software 3
Development
SER 305 Advanced Computational Problem 3
Solving
SER 340 Full-Stack Development 1:Software 3
Requirements Analysis
SER 341 Full-Stack Development 2: Software 3
Design

 Software Quality Assurance
 | SER 350 | Software Project Management | 3 |
| :--- | :--- | ---: |
| SER 490 | Engineering Professional
 Experience | $0-1$ |
| SER 491 | Senior Capstone I | 3 |
| SER 492 | Senior Capstone II | 3 |
| CSC/SER Elective: CSC 210, CSC 240 or any CSC or | | |
| SER course at the 300 level or above 4 | | |

Total Credits

1

The second Natural Science course must be a continuation of the first course.

2
Courses must be from different areas.
3
Total math/science credits must equal a minimum of 30 credits. 4

Waived with approved minor.

Complete additional coursework to reach 120 credits. This coursework must include any missing UC credits from Personal Inquiry II above.

Student Outcomes

Attainment of the following outcomes prepares graduates to enter the professional practice of engineering:

1. an ability to identify, formulate and solve complex engineering problems by applying principles of engineering, science and mathematics.
2. an ability to apply engineering design to produce solutions that meet specified needs with consideration of public health, safety and welfare, as well as global, cultural, social, environmental and economic factors.
3. an ability to communicate effectively with a range of audiences.
4. an ability to recognize ethical and professional responsibilities in engineering situations and make informed judgments, which must consider the impact of engineering solutions in global, economic, environmental and societal contexts.
5. an ability to function effectively on a team whose members together provide leadership, create a collaborative and inclusive environment, establish goals, plan tasks and meet objectives.
6. an ability to develop and conduct appropriate experimentation, analyze and interpret data, and use engineering judgment to draw conclusions.
7. an ability to acquire and apply new knowledge as needed, using appropriate learning strategies.

Program Educational Objectives

Within four to seven years of graduation, graduates of the software engineering program are expected to:

1. Be models of ethical behavior in their profession and community.
2. Achieve sustained employment in a professional field and/or pursue additional educational opportunities.
3. Continue lifelong learning as they develop professionally and maintain currency with software engineering knowledge and skills.
4. Demonstrate professional and personal growth through leadership and mentoring roles.

Admission Requirements: School of Computing and Engineering

The requirements for admission into the undergraduate School of Computing and Engineering programs are the same as those for admission to Quinnipiac University.

Admission to the university is competitive, and applicants are expected to present a strong college prep program in high school. Prospective firstyear students are strongly encouraged to file an application as early in the senior year as possible, and arrange to have first quarter grades sent from their high school counselor as soon as they are available.

For detailed admission requirements, including required documents, please visit the Admissions page of this catalog.

> Seamless Transfer Agreement with Gateway Community College (GCC), Housatonic Community College (HCC) and Norwalk Community College (NCC)

Under this Transfer Agreement, GCC, HCC and NCC graduates will be guaranteed admission into a bachelor's degree program with third year (junior) status at Quinnipiac University on the condition that they:

- Graduate with an associate in arts, an associate in science in business, College of Technology engineering science and computer science, nursing or an allied health degree with a minimum cumulative GPA of 3.00 (this may be higher in specific programs).
- Satisfy all other Quinnipiac University transfer admission requirements and requirements for intended major.

Quinnipiac University agrees to accept the general education embedded in these associate degree programs in accordance with Quinnipiac preferred choices for general education as meeting all the requirements of its undergraduate general education except for the Integrative Capstone Experience and where courses are encumbered by the major (e.g., General Chemistry for the Disciplinary Inquiry Natural Science requirement for a Biochemistry major).

Suggested Transfer Curriculum for BS in Software Engineering

A minimum of 60 credits is required for transfer into the BS in Software Engineering program. Below is a sample plan of study for the first two years.

Course Title	Credits
First Year	
Fall Semester	
English I	3
Calculus I	4
Introduction to Engineering	3
Java Programming I	4
Elective	3
	$\mathbf{1 7}$

Spring Semester	
English II	3
Discrete Mathematics	3
Java Programming II - Logic \& Design	4
Elective	3
Elective	3
Credits	16
Second Year	
Fall Semester	
General Chemistry II with Lab	4
History Elective	3
Math Elective	3
Elective	3
Elective	3
Credits	16
Spring Semester	
General Chemistry II with Lab	4
Math Elective	3
Computer Science Elective	3
Computer Science Elective	3
Elective	3
Credits	16
Total Credits	65

